Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. J. Pharm. Sci. (Online) ; 58: e19801, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1394060

RESUMO

Abstract In the recent past, drug delivery through nanoparticles is considered an effective tool to treat various diseases. Biopolymeric nanoparticles such as protein based nanoparticles have vital role as drug carrier as it is non-antigenic, and easily biodegradable. Curcumin, plant polyphenolic anticancerous compound was loaded into the casein nanoparticles by coacervation method. Particle size and surface charge of spherical casein nanoparticles as observed to be 201.4 nm and -86.9 mV. The loading efficiency of curcumin loaded casein nanoparticles was found to 85.05 %. In vitro drug release was performed at different pH (7.4 and 3.0), and the cumulative release was observed to be 24.8 and 20.13% and at different temperatures (25°C and 37°C), the cumulative release was observed to be 24.8 and 28.60 % respectively in 48 h. Curcumin release from casein nanoparticles was shown to be in a steady, and prolonged rate. The nanoparticles were observed to have an effective antimocrobial activity than curcumin in free form. The drug loaded casein nanoparticles were found to be potent particles to protect cells from hydrogen peroxide and UV light damage. The cytotoxic activity of nanoparticles on MCF7 and A549 cells were assayed and was observed to have an IC50 value of 609 and 825.2µg/ml. Cell death was observed to be through apoptosis, accompanied by DNA fragmentation.


Assuntos
Humanos , Caseínas , Curcumina , Nanopartículas , Antineoplásicos/farmacologia , Técnicas In Vitro , Apoptose , Concentração Inibidora 50 , Curcumina/farmacocinética , Liberação Controlada de Fármacos , Células A549 , Antineoplásicos/farmacocinética
2.
Braz. J. Pharm. Sci. (Online) ; 55: e00254, 2019. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1055301

RESUMO

One of the important fields in nanotechnology is the development of an environment friendly method for the synthesis of nanoparticles. Many approaches show that microorganisms are the most reliable tools for biosynthesis of nanoparticles compared to physical and chemical methods. In our study, fungi have been exploited for extracellular production of metal nanoparticles. It was observed that in Scedosporium, silver ions are reduced to silver nanoparticles, which was confirmed by UV-visible spectrophotometry and AFM. Optimization studies showed that as the concentration of AgNO3 used for synthesis increased, particles' size also increased. Size of the particles at different concentrations of AgNO3 was observed to be 79-107 nm with particles being ellipsoidal to spherical in shape. Silver nanoparticles synthesized from 2.0 mM silver nitrate, showed maximum antimicrobial activity compared to all antibiotics tested including synergistic effects. In vitro cytotoxicity of silver nanoparticles against MCF 7 and PC 3 showed that as the concentration of silver nanoparticles increased, a decrease in the percentage cell viability was observed with IC50 values being 60.09 and 57.43 µg/ml respectively. Therefore, through this study, it could be said that extracellular synthesis of silver nanoparticles from Scedosporium was simple, ecofriendly, proving excellent antimicrobial and anticancer agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA